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Abstract:  

In many applications one is concerned with estimation of the causal impact of a multiple time 
point intervention on a final outcome based on observing a sample of longitudinal data 
structures. We consider the case that subjects are monitored at a finite set of time-points on a 
continuous time-scale, and at these monitoring times treatment actions and or time-
dependent covariates and outcomes are collected. Current methods based on sequential 
regression break down under this setting. We develop a new targeted maximum likelihood 
estimator that still avoids estimation of the conditional densities for outcome and covariates of 
likelihood, but instead estimates a conditional mean function. We also consider a TMLE that 
involves estimation of the conditional densities. We develop highly adaptive lasso estimators of 
the nuisance functions and establish asymptotic efficiency of the TMLE under minimal 
conditions. In particular, we demonstrate these new TMLEs for estimation of treatment specific 
survival functions for single time-point interventions on competing survival times. Advantages 
relative to first discretizing the time scale and using currently avaiable corresponding TMLE are 
discussed. 
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The use of observational time series data to assess the impact of multi-time point interventions 

is becoming increasingly common as more health and activity data are collected and digitized 

via wearables, social media, and electronic health records. Such time series may involve 

hundreds or thousands of irregularly sampled observations. One common analysis approach is 

to simplify such time series by first discretizing them into sequences before applying a discrete-

time estimation method that adjusts for time-dependent confounding. In certain settings, this 

discretization results in sequences with many time points; however, the empirical properties of 

longitudinal causal estimators have not been systematically compared on long sequences. In 

this talk, we compare three representative longitudinal causal estimation methods on simulated 

and real clinical data and analyze the impact of sequence length and discretization bin width on 

estimator performance. Our simulations and analyses assume a Markov structure and that 

longitudinal treatments/exposures are binary-valued and have at most a single jump point. We 

identify sources of bias that arise from temporally discretizing the data and provide practical 

guidance for discretizing data and choosing between methods when working with long 

sequences. Additionally, we compare these estimators on electronic health record data, 

evaluating the impact of early treatment for patients with a life-threatening complication of 

infection called sepsis. 
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Mobile health intervention studies, where interventions such as push notifications are delivered 
to individuals repeatedly during the course of the study, provide intensive longitudinal data with 
time-varying treatments. This provides unprecedented opportunity to understand how the causal 
effect of such interventions changes over time and is modified by contextual information, and 
it in turn informs the development and optimization of these interventions. Motivated by a 
physical activity study (HeartSteps micro-randomized trial), we develop methods to model the 
time-varying effect of push notifications that suggest exercise, where the outcome of interest at 
each decision point is the minute-level step count over the subsequent hour. We develop 
marginal and conditional models for the causal effect on the nested longitudinal data (decision 
points within each participant and minutes within each decision point), and we incorporate 
techniques such as penalized splines, Gaussian Processes, and generalized additive models to 
allow for flexible causal effect curves over time. In addition, we address the challenge that the 
outcome (step count at each minute) is zero-inflated. 


